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Abstract
Ecologists and oceanographers inform population and ecosystem management by 
identifying the physical drivers of ecological dynamics. However, different research 
communities use different analytical tools where, for example, physical oceanogra-
phers often apply rank-reduction techniques (a.k.a. empirical orthogonal functions 
[EOF]) to identify indicators that represent dominant modes of physical variability, 
whereas population ecologists use dynamical models that incorporate physical in-
dicators as covariates. Simultaneously modeling physical and biological processes 
would have several benefits, including improved communication across sub-fields; 
more efficient use of limited data; and the ability to compare importance of physi-
cal and biological drivers for population dynamics. Here, we develop a new statisti-
cal technique, EOF regression, which jointly models population-scale dynamics and 
spatially distributed physical dynamics. EOF regression is fitted using maximum- 
likelihood techniques and applies a generalized EOF analysis to environmental meas-
urements, estimates one or more time series representing modes of environmen-
tal variability, and simultaneously estimates the association of this time series with 
biological measurements. By doing so, it identifies a spatial map of environmental 
conditions that are best correlated with annual variability in the biological process. 
We demonstrate this method using a linear (Ricker) model for early-life survival  
(“recruitment”) of three groundfish species in the eastern Bering Sea from 1982 to 
2016, combined with measurements and end-of-century projections for bottom and 
sea surface temperature. Results suggest that (a) we can forecast biological dynam-
ics while applying delta-correction and statistical downscaling to calibrate measure-
ments and projected physical variables, (b) physical drivers are statistically significant 
for Pacific cod and walleye pollock recruitment, (c) separately analyzing physical and 
biological variables fails to identify the significant association for walleye pollock, and 
(d) cod and pollock will likely have reduced recruitment given forecasted tempera-
tures over future decades.
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1  | INTRODUC TION

Individual variation in animal growth, survival, and reproductive 
output is driven by differences in local habitat, where habitat dif-
ferences arise from both bottom-up processes affecting resource 
availability and top-down control via predation and anti-predatory 
behaviors. Local habitat is, in turn, affected by oceanographic and 
atmospheric processes that exhibit complex spatial correlations 
across large scales (often called “teleconnections”). Mobile fishes, 
birds, and mammals will select optimal habitats based on available 
information, while population-scale demographic rates (e.g., adult 
survival rate and production of juveniles) represent the average rate 
for individuals in varied habitats that are distributed across space. 
Therefore, variation in population-scale rates is not typically driven 
by conditions at any single location, but instead correlates with 
variation in regional conditions that are associated with modes of 
physical variability that affect habitat at many different locations. 
In the Pacific Ocean, for example, the El Niño Southern Oscillation 
(ENSO) represents oceanographic and atmospheric teleconnec-
tions that correlate surface temperature and other ocean vari-
ables between spatially disparate sites. In this ecosystem, skipjack 
tuna track spatial shifts in the distribution of warm waters such 
that their spatial distribution is correlated with ENSO. However, 
population-scale demographic rates are buffered against tempera-
ture conditions occurring at any single site due to their ability to 
maintain suitable conditions via movement (Lehodey, Bertignac, 
Hampton, Lewis, & Picaut, 1997). In this and other cases, there is a 
need to associate spatially integrated biological rates with spatially 
distributed measurements of physical conditions when forecasting 
biological responses under changing physical conditions (Bindoff 
et al., 2019; Payne et al., 2017; Tommasi et al., 2017).

Ecologists and oceanographers have characterized dominant 
modes of environmental variability (and resulting teleconnections 
across geographically distant sites) using rank-reduction tech-
niques including empirical orthogonal function (EOF) analysis 
(e.g., Hermann et  al.,  2019). EOF analysis takes as input the many 
spatially distributed measurements for a given oceanographic or at-
mospheric process (which we collectively call “physical processes”), 
each taken over time (typically over many years). EOF analysis re-
duces these measurements down to one or more time series as well 
as a map of physical conditions that are associated with a positive 
or negative value of each time series (Grimmer, 1963). EOF analysis 
has been used to define many well-known oceanographic processes, 
including the ENSO, the Pacific Decadal Oscillation (PDO), and many 
others (Kidson, 1975). Decades of research has involved extracting 
these indices and then including them as a covariate in a subsequent 
biological analysis (Mantua, Hare, Zhang, Wallace, & Francis, 1997; 
O’Leary, Miller, Thorson, & Nye, 2018).

For many marine fishes, variation in productivity and sustain-
able yield is driven in particular by large interannual variation in the 
production of juvenile fish, termed “recruitment” (Cushing, 1990; 
Hjort,  1926). As a consequence, understanding and predict-
ing this variation has been a major goal of fisheries oceanogra-
phy and stock assessment for over 100 years (Smith, 2007). The 
stock–recruit paradigm seeks to predict recruitment based on 
the biomass of spawning fish and resulting production of larvae, 
and there is widespread evidence that stock–recruit relationships 
occur (Myers,  2001). Although debates continue regarding spe-
cific methods for attribution (Szuwalski et al., 2019), it is clear that 
residual variability around this stock–recruit relationship is sub-
stantial (Thorson, Jensen, & Zipkin,  2014) and research is ongo-
ing regarding statistical and mechanistic relationships to explain 
this residual variation after accounting for the stock–recruit re-
lationship (Maunder & Thorson,  2019). However, most attempts 
to correlate stock–recruit residuals with environmental conditions 
have used pre-existing indices of ecosystem variability (e.g., PDO, 
North Atlantic Oscillation, etc.) rather than estimating the map of 
physical conditions that are most correlated with a specific bio-
logical process. There remains a pressing need to identify optimal 
sites to monitor as an index of environmental conditions, or alter-
natively to generate an environmental index that is appropriate for 
a given species and demographic process.

In this study, we develop a novel method that connects spa-
tially distributed measurements of physical conditions with a time- 
series regression model that represents average biological rates 
at regional scales. Specifically, this method uses likelihood-based 
statistical methods to simultaneously estimate parameters for a 
physics component (a multivariate generalization of EOF analysis) 
and a biology component (a linear regression of a biological rate), 
to identify spatially correlated (and potentially nonlocal) physical 
conditions that are correlated with a given biological process. We 
demonstrate the method by fitting EOF analysis to bottom and 
surface temperature measurements in the eastern Bering Sea as 
well as projections of these same variables from a regional ocean 
model while fitting a linearized stock–recruit model to stock as-
sessment records for three groundfishes. By combining these 
two processes, the approach estimates the map of physical con-
ditions that have maximum correlation with above-average re-
cruits-per-spawning biomass while also providing an estimate of 
the statistical significance of this relationship that propagates 
uncertainty from the physical component. In doing so, we demon-
strate that the physics component can assimilate both historical 
ocean measurements and projected future conditions while in-
tercalibrating the two data streams. This model-based intercali-
bration of historical and projected physical conditions allows us 
to forecast the stock–recruit relationship under end-of-century 
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climate conditions. We conclude with a description of other are-
nas in which it might be useful to jointly apply EOF analysis and 
biological time-series model.

2  | METHODS

We seek to identify the spatially distributed physical conditions 
that are associated with a spatially integrated biological process 
so that we can better estimate and forecast links between spa-
tially varying physics and population-scale outcomes. We there-
fore jointly fit a statistical model to multiple datasets using two 
separate components for physics and biology. Assimilating both 
physical and biological data simultaneously allows the variance in 
the physics analysis to be propagated when forecasting biologi-
cal responses (Niu et al., 2014). The physics component involves 
a statistical generalization of EOF analysis, whereas the biology 
component follows a conventional linear regression. Both com-
ponents are fitted simultaneously using maximum-likelihood 
techniques as a mixed-effects model, and we distribute code to 
apply these methods in other circumstances as R package EOFR  

(https://github.com/James​-Thors​on/EOFR). Future developments 
could incorporate nonlinear regression techniques, although we 
leave this as a topic for future research. We explain each compo-
nent in detail in the following sections (see summary in Figure 1) 
while adapting conventions for mathematical notation from 
Edwards and Auger-Méthé (2019).

2.1 | Physics component

The physics component fits to measurements of multiple physical 
processes that are distributed across space and time. Specifically, 
we fit to measurements of nc physical processes, which are each 
indexed by c, and use the following notation to define spatial and 
temporal variation:

1.	 Spatial variation: We define ng grid cells that are indexed by g 
and which discretize a spatial domain Ω (i.e., g∈

{

1,2,… ,ng
}

),  
where each grid cell has location sg (i.e., sg∈Ω);

2.	 Temporal variation: We define nt time intervals between time tmin 
and tmax (i.e., t∈

{

tmin,tmin+1,… ,tmax

}

).

F I G U R E  1   Schematic showing linkage between the two components of the empirical orthogonal function (EOF) regression model: (a) the 
physics component (left-hand side), which includes one or more estimated time series representing the dominant mode of environmental 
variability (middle top panel) and an estimated spatial map (top-left panel) representing the response of each physical variable to that index, 
where the product of these is used to predict physical variables in each year (bottom left panels); and (b) the biology component (right-hand 
side), which includes the estimated time series as a predictor for a biological process measured over those same years (top-right panel). The 
linear model for the biological process (bottom-right panel) shows a statistically significant, negative relationship with the estimated time 
series; this indicates that when physical variables resemble their value in EOFs (top left panels), then this is associated with lower-than-
average values for the biological process

Maps
empirical orthogonal func�ons

Time series
Principle component of physics

Biological process 
Response variable

Physics component Biology component

https://github.com/James-Thorson/EOFR
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We arrange measurements of physical processes in a matrix, 
where row i includes the measurement bi as well as the category ci, 
grid cell gi, time ti, and method li that is used to obtain that measure-
ment. We include index li to allow us to fit to data from different 
measurement methods for a single physical variable. The physics 
component estimates spatial correlations and uses these to predict 
physical variables at unsampled locations. This allows the physics 
component to be fitted to physical variables that are spatially mis-
aligned (i.e., different physical measurements can occur at different 
locations gi) and unbalanced (i.e., measurements can be systemat-
ically missing in different locations gi and times ti). The following 
development assumes that data are missing at random, but future 
studies could explore model-based approaches to relax that assump-
tion (e.g., Conn, Thorson, & Johnson, 2017).

The physics component then fits a multivariate generalization 
of EOF analysis. This generalization assumes that spatial processes 
are on average more similar at geographically nearby than geo-
graphically distance locations (Tobler, 1970). Specifically, the model 
estimates one or more latent variables that include a spatial correla-
tion function to approximate correlations among nearby locations 
(Banerjee, Gelfand, Finley, & Sang,  2008; Shelton, Thorson, Ward, 
& Feist, 2014). These spatial latent variables that are multiplied by a 
loadings matrix to approximate covariation among years, analogous 
to “factor” models in community ecology (Latimer, Banerjee, Sang, 
Mosher, & Silander, 2009; Thorson et al., 2015; Zuur, Fryer, Jolliffe, 
Dekker, & Beukema,  2003). This generalization has been explored 
previously (e.g., Thorson, Ciannelli, & Litzow, 2020), although these 
applications have not included a linkage between EOF indices and 
biological measurements.

This physics component estimates parameters for the loadings 
matrix � that contains the value �t,f of index f in each time t. It 
also estimates random effects �g,c,f representing the expected re-
sponse to index f at location g for each variable c. Any two loca-
tions g1 and g2 that have a large magnitude for response �g,c,f for a 
given factor f will tend to have correlated physical dynamics. When 
these two locations g1 and g2 are geographically distant, we refer 
to these correlations as teleconnections; these teleconnections 
can occur among locations for a single variable c, or among two 
variables c1 and c2, as well as beyond the decorrelation distance 
of the spatial correlation function that is used when estimating 
random effects. The physics component also estimates the vari-
ance of residual errors �2

c
, the spatial decorrelation rate �, and the 

intercept αl and variance of spatial variation �2
l
 for each type of 

measurement, where �g,l is a random effect representing spatial 
variation in average measurements for measurement type l at each 
location g. Parameters are estimated via maximum likelihood (see 
Appendix A in Data S1 for more details regarding model structure 
and Appendix B in Data S1 for identifiability criteria). When there 
are two or more measurements l for the same variable c, then the 
difference �g,l1 −�g,l2 represents spatial variation in the expected 
difference between two measurements of the same variable; 
this is conceptually similar to statistical downscaling and the del-
ta-change method (Gleick, 1986).

2.2 | Biological component

To demonstrate the linkage between physics and biology com-
ponents as clearly as possible, we specify a very simple biological 
component. Specifically, we use a linear regression to represent bio-
logical dynamics; a linear relationship is commonly used to represent 
annual demographic rates as a function of annual environmental 
conditions. The linear model includes record yj for measurement j of 
nj measurements, and minimizes the difference between these re-
cords and model predictions y∗

j
:

In the following, we use a normal distribution with variance �2,  
although future developments could explore a generalized linear 
model with a link function and distribution from the exponential 
family, or a nonlinear model linking covariates and response vari-
able. The linear model also includes nk covariates xj,k that represent 
measured processes that explain the biological process beyond 
what is explained by physical variables included in the physics 
component.

Unlike conventional linear regression, however, we include an 
estimated mode of physical variability within our linear regression:

This model estimates parameters representing the intercept �0, 
covariate effects �k, residual variance �2, as well as the parameter � 
governing the cross-correlation between physics and biology compo-
nents. When fixing � =0, the physics and biology components include 
no parameters in common and the model reduces to two indepen-
dent models for biological and physical processes. When estimating �,  
by contrast, the model can identify more terms in loadings matrix � 
(see Appendix B in Data S1 for details regarding identifiability criteria). 
Maximum-likelihood estimates for these additional coefficients rep-
resent the role of each index �f in explaining residuals in yj. By jointly 
estimating physics and biology components, the model can identify 
additional coefficients in �f simultaneously with other biological co-
variates �k. It therefore estimates a mode of physical variability (analo-
gous to how the PDO or ENSO is conventionally estimated), except it 
does so in a way that customizes this variable to maximize its explan-
atory power for a given biological process.

2.3 | Case-study demonstration: Recruitment for 
eastern Bering Sea groundfishes

We demonstrate this joint model by fitting the widely used Ricker 
stock–recruit model to records of age-0 recruitment (in numbers) 
and spawning biomass in each year from 1982 to 2016 for three 

(1)yj∼Normal
(

y∗
j
,�2

)

.

(2)

y∗
j
= �0 +

nk
∑

k=1

�kxj,k

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

Conventional linear model

+ ��tj ,1
⏟⏟⏟

Linkage to

physical submodel

.
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commercially important groundfish species in the eastern Bering 
Sea, and then linking this model to end-of-century climate pro-
jections to forecast changes in recruitment for these species. The 
Ricker model represents density-dependent fecundity and early-
life survival in fishes (see Appendix C in Data S1 for details), and it 
has been widely documented in fishes that compete for space and 
resources when spawning (Foss-Grant, Zipkin, Thorson, Jensen, & 
Fagan, 2016). We specifically link bottom and surface temperature 
to stock–recruit relationships for three groundfishes in the east-
ern Bering Sea: Pacific cod (Gadus macrocephalus), walleye pol-
lock (Gadus chalcogrammus), and yellowfin sole (Limanda aspera). 
We note that these stock–recruit records are estimates from age-
structured stock assessment models, with associated errors aris-
ing from sampling variability and model mis-specification. Treating 
estimates as data in this way results in several well-known bi-
ases (Brooks & Deroba,  2015; Dickey-Collas, Payne, Trenkel, & 
Nash,  2014; Ludwig & Walters,  1981), and we encourage future 
research that applies the EOF regression approach developed here 
simultaneously with estimating parameters for age-structured 
population models.

We analyze these stock and recruitment records jointly with 
surface and bottom temperatures. Specifically, we include bottom 
temperature measurements from net sensors attached to bottom 
trawl samples conducted by the Bering Sea shelf survey, conducted 
during late Spring and early summer from 1982 to 2018 (Lauth & 
Conner,  2014), and surface temperature records from the NOAA 
Extended Reconstructed Sea Surface Temperature (v.5) product 
(Huang et al., 2017), representing the January average from 1982 
to 2018. We also include Regional Ocean Modeling System (ROMS) 
hindcasts of bottom and surface temperatures from 2009 to 2018 
and ROMS projections of these variables every 10th year from 2020 
to 2090. These ROMS hindcasts and projections are generated by 
a downscaled regional hindcast model (Bering10K-NPZ), which was 
itself driven by observed atmospheric and oceanic conditions from 
global reanalysis (the Climate Forecast System Reanalysis), and then 
projected to 2090 by downscaling a subset of CMIP5 Earth System 
models (Hermann et al., 2019; Kearney, Hermann, Cheng, Ortiz, & 
Aydin, 2020). We treat bottom and surface temperature as two mea-
surements, and bottom and surface hindcasts/projections as two 
additional measurements (nl = 4), and the model intercalibrates these 
multiple data streams using the overlap from 2009 to 2018 between 
measurements and hindcasts/projections. We estimate three modes 
of physical variability; future research could explore using model- 
selection techniques to determine the optimal number of modes, al-
though we do not address the topic here.

Finally, we compare results using the new approach EOF regres-
sion with a conventional approach to linking spatially distributed 
measurements of physics as well as a time series representing a 
biological variable that integrates across the same spatial domain. 
To do so, we calculate the primary mode of variability for surface 
temperature records, and include this as a covariate in the same lin-
earized Ricker model for stock–recruit records (Appendix D, Figure 
S1 in Data S1). We extract the statistical significance using this 

conventional approach, and compare it with the significance using 
EOF regression.

3  | RESULTS

Visualizing predictions of surface and bottom temperatures 
(Figure  2) based upon bottom-temperature measurements avail-
able for 1982–2018 and ROMS model hindcasts and projections 
available for 2009–2090 show that the physics component identi-
fies interannual variation in the spatial extent of cold near-bottom 
waters (termed the “cold pool,” and shown as blue areas in the first 
and third columns of Figure  2). In particular, 1999 had one of the 
largest measured cold pools while 2018 had one of the smallest cold 
pools on record. This pattern is captured by field measurements and 
ROMS simulation for both years, although field measurements in 
1999 could also be extreme due to small changes in survey timing 
in that year. Predictions are slightly different between the measure-
ments and ROMS predictions due to model-based intercalibration of 
these two data streams. Bottom temperatures in the inner domain 
and along the Aleutian Islands are then projected to substantially 
increase in 2040 and particularly by 2090. Similarly, surface tem-
peratures are projected to greatly increase in the southern Bering 
Sea over time (Figure 2, second and fourth columns). The areas of 
greatest warming for bottom temperatures (near Nunivak Island and 
Bristol Bay) are geographically distant from areas with warming sur-
face temperatures (near the Aleutian Islands), and this illustrates that 
EOF analysis can capture “teleconnections” arising among physical 
variables. When estimating modes of physical variability without a 
link to biological data (Appendix E in Data S1), the first mode rep-
resents an increase in bottom temperature in the inner domain 
(Appendix E, Figure S2b in Data S1), whereas the second and third 
modes collectively capture variation in the extent of the cold pool 
(Appendix E, Figure S2a in Data S1).

By contrast, the first factor varies by species when jointly 
fitting to physical variables and biological time series (Appendix 
E, Figure S3 in Data S1). This factor typically has a high value in 
1999, which also has elevated recruits-per-spawning biomass for 
walleye pollock and Pacific cod (Figure S3 in Data S1, first two 
rows). The map associated with this first factor shows the vari-
ation in physical conditions that is most correlated with above- 
average recruits-per-spawning biomass for each species (Figure 3). 
This map illustrates the locations where unusual physical condi-
tions are most likely to impact recruits-per-spawning biomass for 
each species, and it differs among species as expected given dif-
ferent biological characteristics of each species. Specifically, the 
model expects that Pacific cod and walleye pollock have elevated 
recruits-per-spawning biomass in years with cooler waters in the 
southern middle domain (as occurs in years with large cold-pool 
extent). Recruitment for both walleye pollock and Pacific cod is 
associated with cooler waters that extend nearshore from Bristol 
Bay to Nunivak Island, whereas Pacific cod recruitment is also as-
sociated with cooler waters offshore to St. George Island. Finally, 
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yellowfin sole recruitment is expected to be elevated under dif-
ferent environmental conditions, for example, elevated bottom 
temperatures inshore from Nunivak Island. These differences are 
also strongly apparent in surface-water associations, where wall-
eye pollock and Pacific cod recruitment is expected to be elevated 

given lower temperatures in the southern Bering Sea, while yel-
lowfin sole is depressed during these same conditions. Elevated 
yellowfin recruitment is associated with opposite physical condi-
tions to conditions with elevated walleye pollock and Pacific cod 
recruitment, and this inverse relationship arises in part due to the 

F I G U R E  2   Illustration of predicted bottom temperature (BT) and surface temperature (SST) using a model that is not linked to biological 
variation (i.e., γ = 0), showing predictions of both measurements and Regional Ocean Modeling System (ROMS) projections of each variable 
(nl = 4, columns) in the eastern Bering Sea, fitted to measurements 1982–2016 as well as ROMS hindcasts and projections 2009–2018 and 
every 10th year 2020–2090. Here we specifically show evenly spaced years during historical and forecasted periods (1982/1999/2018 
and 2040/2090). Differences among years (rows; e.g., from 1982 to 2090) for a given variable (column) visualize the regional expression 
of climate change; differences among predicted measurements for a given variable (e.g., first and third columns) show the model-based 
intercalibration of physical measurements and ROMS projections; differences among variables (e.g., first and second columns) show the 
varying expression of climate change for different physical variables
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F I G U R E  3   Visualization of estimated maps �g,c,1 for a given physical variable (column) for the factor that is simultaneously used as a 
covariate when fitting to stock–recruit data for Pacific cod, walleye pollock, or yellowfin sole (rows). Colors show locations that are positively 
(red) or negatively (blue) associated for a given physical variable with variation in log-recruits-per-spawning biomass for each species; the 
bottom right panel labels locations mentioned in text (A: St. George Island; B: Bristol Bay; C: Nunivak Island). We show plots for each species 
to highlight the different spatial locations that are associated with positive residuals in recruits-per-spawning biomass
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F I G U R E  4   Visualization of log-recruits-per-spawning biomass (y-axis) either as a function of year (left-column x-axis) or spawning biomass 
(right-column x-axis) for models fitted to stock–recruit data for each individual species (rows). For each species, we show the recorded 
value (black square), the estimate without cross-correlation, γ = 0 (blue line) or estimating cross-correlation γ (red line), where vertical lines 
represent ±1 SE. In each time series, we list the correlation between recorded values and predicted log-recruits-per-spawning biomass for 
models without (blue number) or with cross-correlation (red number). In each time-series panel, we indicate forecasted years (2020–2090) 
using gray shading. In each stock–recruit panel, we include a line showing the estimated stock–recruit relationship, which is linear given the 
parameterization of the Ricker model being used, and show the predicted stock–recruit relationship given estimated physical conditions in 
2090 (gray line)
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restriction that environmental drivers of recruitment are associ-
ated with one of the leading modes of physical variability.

Finally, we compare estimates of early juvenile survival (log- 
recruits-per-spawning biomass) for a model with or without a linkage 
to regional physics (Figure 4). For all three species, including physi-
cal variables when predicting recruitment substantially improves the 
correlation between predicted recruitment and stock-assessment 
estimates of recruitment (from 0.60 to 0.68 for Pacific cod, from 
0.61 to 0.69 for walleye pollock, and from 0.18 to 0.32 for yellow-
fin). Parameter � representing this link is significant for pollock and 
cod (based on a two-sided Wald test), although the Akaike informa-
tion criterion indicates that the model linking physics and biology is 
only parsimonious for Pacific cod (Table 1); the parameter is neither 
parsimonious nor significant for yellowfin sole. By contrast, physical 
drivers are only significant (using a two-sided Wald test) for walleye 
pollock and not significant for Pacific cod or yellowfin when using 
the conventional approach that first applies EOF analysis to surface 
temperatures and then uses the first mode of variability as a covari-
ate in a stock–recruit model (see “Conventional” columns of Table 1).

The EOF regression model expected elevated Pacific cod and 
walleye pollock recruitment given cooler bottom temperatures in 
the southern middle domain, so it is unsurprising that recruitment for 
these two species is expected to decline over the coming decades. In 
particular, log-recruits-per-spawning biomass is expected to decline 
by 0.89 by 2090 for Pacific cod, corresponding to a nearly 59% de-
cline in yield all else equal (i.e., yield-per-recruit, spawning biomass, 
recruitment density dependence remain constant), and by 0.85 for 
walleye Pollock, corresponding to a nearly 57% decline in yield all 
else equal. Alternatively, increased yellowfin recruits-per-spawning 
biomass is expected given elevated bottom and surface tempera-
tures, and explains an increase in expected recruitment for this 
stock.

4  | DISCUSSION

In this paper, we explained the rationale for relating spatially in-
tegrated biological processes (e.g., stock–recruit relationships) to 
dominant modes of physical variability that are associated with at-
mospheric and oceanographic teleconnections. We then developed 
a statistical model that jointly fits to spatially distributed physical 
measurements and population-scale biological measurements. The 
resulting model estimates the map of physical conditions that are 
maximally correlated with a given biological process, and simulta-
neously performs delta-correction and statistical downscaling to in-
tercalibrate field measurements and climate projections from earth 
systems models. Finally, we showed how this model can represent 
the widely used Ricker model for early-life survival in fishes, and 
used three case-study applications to show how the model can iden-
tify significant relationships between physics and juvenile survival. 
We confirmed that a conventional, separate analysis of physics and 
biological processes fails to identify one of the relationships as sig-
nificant, and also highlight the different landscape of environmental TA
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conditions that are favorable for recruitment of each species. We 
now discuss how EOF regression could be extended in future re-
search, as well as why we hypothesize that it will help to identify 
stationary and skillful associations between physics and resulting 
biological outcomes.

Changing climate conditions present a challenge for envi-
ronmental management (Karp et  al.,  2019). Climate is known 
to impact fish productivity and distribution (Brander,  2010; 
Finney et  al.,  2010; Holsman, Essington, Miller, Koen-Alonso, & 
Stockhausen, 2012; Lehodey et al., 2006), but it remains difficult 
to detect climate linkages that result in skillful, annual predictions 
of parameters that are used for fisheries management. We antici-
pate that EOF regression can be used to rapidly screen for physi-
cal conditions that are associated with a given biological process. 
Retrospective skill testing could then be used to identify which as-
sociations between physics and biology have been stable over re-
cent years, and therefore are likely to persist over the next several 
years (Karp et  al.,  2019; Thorson,  2019). Some physics–biology 
associations may be skillful for short-term predictions; in other 
cases, estimated associations may be useful to target future re-
search regarding biological mechanisms. Although we studied the 
stock–recruit relationship in this study, EOF regression could be 
extended to model a nonlinear relationship between physics and 
biology for a wide range of taxa; for example, informing optimal 
spatial planning or population viability analysis.

As climate change causes environmental conditions to exceed 
the climate envelope that prevailed during historical data collection, 
it becomes increasingly important to understand mechanisms gov-
erning the abundance, distribution, recruitment, productivity, and 
community interactions of natural populations. However, there are 
two major problems when linking physical variability to population 
processes: (a) environmental variables are often colinear such that 
individual effect of each variable is difficult to estimate (Dormann 
et al., 2013) and (b) it is difficult to attribute observed variability to 
causal mechanisms using short, noisy observational data. Using an 
example for fishes in the Bering Sea, water temperature and sea-
sonal stratification patterns are correlated processes on the conti-
nental shelf (Stabeno et al., 2012). The former variable is expected to 
affect groundfish recruitment through thermal effects on physiolog-
ical processes as reflected in growth and development rates (Laurel, 
Spencer, Iseri, & Copeman, 2016), whereas the latter is expected to 
affect recruitment by modulating the timing and magnitude of pri-
mary production (Sigler, Stabeno, Eisner, Napp, & Mueter, 2014). We 
speculate that the importance of these two processes will in some 
cases be identifiable by fitting to spatially distributed measurements 
of both temperature and stratification; identifying their relative im-
portance will be facilitated whenever there is spatial variation that 
provides contrast to separate the impact of these collinear processes 
on a biological time series. Results when fitting to this expanded set 
of physical variables may, in turn, be useful for refining hypotheses 
for subsequent process studies for improved mechanistic under-
standing of climate impacts on population dynamics, or for relating 
changes in spatial distribution to regional climate variability.

We note several topics that warrant further research. These in-
clude the following:

1.	 Jointly fitting EOF regression with other modeling steps. For 
example, we could jointly fit an EOF to physics and an age-struc-
tured or integral-projection model (Merow et  al.,  2014). This 
would avoid using stock–recruit records as data as we did in 
this analysis.

2.	 Comparing EOF regression with approaches to analyzing physical 
modes of variability (see Appendix F in Data S1 for past approaches 
in the Bering Sea). For example, analysts have conventionally used 
oceanographic indices extracted from EOF analyses applied to 
physical data, and then included those in population models (see 
Appendix D in Data S1; Table 1). We recommend further perfor-
mance comparisons of EOF regression with the approaches that 
apply EOF and biological analyses separately; our comparison for 
these three case studies suggests that EOF regression is a more 
efficient use of available data and can detect a significant relation-
ship in cases that a sequential approach might otherwise miss.

3.	  Exploring implications for population management of case-study 
species. Each species analyzed here is commercially important 
and subject to regular assessment of sustainable catch limits and 
stock status. Therefore, incorporating physical information to 
predict juvenile survival could be useful for each stock, but would 
also require careful consideration to incorporate within existing 
management processes (see Appendix G in Data S1).

We hope to facilitate these and other research topics by making 
our code publicly available at https://github.com/James​-Thors​on/
EOFR.

Another persistent problem in resolving environmental control 
of population variability in natural populations is the tendency for 
observed environment–biology correlations to arise and disappear 
over time (Myers, 1998). These “ephemeral” correlations are often 
interpreted as reflecting correlation that is incorrectly confused with 
causality (Deyle, May, Munch, & Sugihara, 2016). However, an alter-
native explanation is that of novel climates, that is, previously unob-
served patterns of collinear relationships among important physical 
variables. Novel climates are expected to become more common 
globally under anthropogenic climate change (Wolkovich, Cook, 
McLauchlan, & Davies, 2014) and have the potential to produce sur-
prising ecological responses, poorly constrained by existing ecologi-
cal understanding (Williams & Jackson, 2007). We envision that joint 
analysis of physical and biological data (such as demonstrated using 
EOF regression) provides a basis for comparing fit and forecasting 
skill for a range of simple (stationary) to complex (time-varying) link-
ages between these two model components.
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